GENERAL CHARACTERISTICS OF

SIGNALS

- PERIODIC OR APERIODIC SIGNAL A signal is said to be periodic if it can be described by the equation
as

$$
f(t)=f(t \pm k T) \quad k=0,1,2
$$ Where T is the period of the signal. The sine wave, $\sin t$, is periodic with period $T=$ 2π. Another example of periodic signal is the Square Wave .

- Signals like pulses (rectangular, triangular) are not periodic because the pulse patterns do not repeat after certain finite interval T
- Periodic signals have the property that $x(t+T)=x(t)$ for all t.
- The smallest value of T that satisfies the definition is called the period.
- Shown below are an aperiodic signal (left) and a periodic signal (right).

ENERGY AND POWER SIGNALS

- Energy signal : An energy signal is a signal which has a finite energy and zero power.
$X(t)$ will be an energy signal if
$0<E<\infty$
E is Energy
and $P=0$
P is Power
- Power Signal : A power signal is one which has finite average power and infinite energy.
$0<\mathrm{P}<\infty$ and $\mathrm{E}=\infty$
- If signal does not satisfy any of the above conditions,
then it is neither an energy nor a power signal.

ENERGY AND POWER SIGNALS (contd)

- Energy signal is given by :-

$$
\begin{aligned}
E=\sum_{-\infty}^{\infty}|x(n)|^{2} \rightarrow \text { discrete signal } \\
E=\sum_{t=-\infty}^{\infty}|x(t)|^{2} \rightarrow \text { continuous signal } \\
t=-\infty
\end{aligned}
$$

- Power signal is given by :-

$$
\begin{aligned}
& \text { To } / 2 \\
& P=\left(1 / T_{0}\right) \quad \int I x^{2}(t) \mid d t \\
& -T_{o} / 2
\end{aligned}
$$

where T_{0} is Time period

DIFFERENCES BETWEEN ENERGY AND POWER SIGNALS

S.No	Energy signal	Power Signal
1	Total normalised energy is finite and non zero.	The normalised average power is finite and non-zero.
2.	The energy is given by ∞ $\mathrm{E}=\int \mathrm{Ix}(\mathrm{t}) \mathrm{I}^{2} \mathrm{dt}$ $-\infty$	The average power is given by $\mathrm{T}_{\mathrm{o}} / 2$
$\mathrm{Lim}\left(1 / \mathrm{T}_{0}\right) \int I \mathrm{I}^{2}(\mathrm{t}) \mathrm{I} \mathrm{dt}$		

DIFFERENCES BETWEEN ENERGY AND POWER SIGNALS

S.No	Energy signal	Power Signal

$5 \quad$ Power of energy signal is zero.

Energy of power signal is infinite.

Ex.:- A single rectangular pulse

Ex. :- A periodic pulse train

Example on Power / Energy Signal

$$
\begin{gathered}
X(n)=(1 / 2)^{n} u(n) \\
\infty \\
E(\infty)=\sum|x(n)|^{2} \\
n=-\infty \\
\infty
\end{gathered}
$$

$$
E(\infty)=\Sigma \mid 1 / 2)^{n} \|^{2}=1+(1 / 2)^{2}+(1 / 2)^{4}+(1 / 2)^{6}+(1 / 2)^{8}+-
$$

$$
\begin{aligned}
& \mathrm{n}=0 \\
& =\quad 1 /\left[1-(1 / 2)^{2}\right]=4 / 3
\end{aligned}
$$

Power is zero since if the energy of the signal is finite then power is zero.

GENERAL CHARACTERISTICS OF SIGNALS (CONTD)

- SYMMETRY PROPERTY OF SIGNALS

The key words here are EVEN and ODD .A signal function can be EVEN or ODD or NEITHER.

- An Even function obeys the relation $f(t)=f(-t)$

For an Odd function

$$
f(t)=-f(-t)
$$

- For example, the function $\sin t$ is odd, and the function $\cos t$ is even.

A signal function need not be even or odd .

- As shown the square pulse is even and triangular pulse is odd.

GENERAL CHARACTERISTICS OF SIGNALS (CONTD)

- Any signal $f(t)$ can be resolved into an even component $f_{e}($ $t)$ and an odd component $f_{o}(t)$ such that

$$
\begin{align*}
& f(t)=f_{e}(t)+f_{o}(t) \tag{1}\\
& f(-t)=f_{e}(-t)+f_{o}(-t) \\
& =f_{e}(t)-f_{o}(t) \tag{2}
\end{align*}
$$

Therefore the odd and even parts of the signal can be

$$
\begin{aligned}
& f_{e}(t)=1 / 2[f(t)+f(-t)] \\
& f_{o}(t)=1 / 2[f(t)-f(-t)]
\end{aligned}
$$

Ex : Resolve the given signal into even and odd parts

Given $\mathrm{f}(\mathrm{t}$) =

$$
f(-t)
$$

Ex : Resolve the given signal into even and odd parts

Given
f (t) as

$f(t)-f(-t)$

$$
\begin{gathered}
f_{e}(t)=1 / 2[f(t)+f(-t)] \\
\hline \\
\hline \\
f_{o}(t)=1 / 2[f(t)-f(-t)]
\end{gathered}
$$

